Baire measurable perfect matchings

Alex Kastner (joint with Clark Lyons)

UCLA

McGill DDC seminar, November 7th, 2023

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

What objects is this talk about?

What objects is this talk about?

A *perfect matching* of a graph is a set of vertex-disjoint edges that cover every vertex.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

What objects is this talk about?

A *perfect matching* of a graph is a set of vertex-disjoint edges that cover every vertex.

Given a (locally finite) Borel graph G on a Polish space V(G), we study whether there is a Borel comeager invariant set $A \subseteq V(G)$ such that $G \upharpoonright A$ admits a Borel perfect matching.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

A *perfect matching* of a graph is a set of vertex-disjoint edges that cover every vertex.

Given a (locally finite) Borel graph G on a Polish space V(G), we study whether there is a Borel comeager invariant set $A \subseteq V(G)$ such that $G \upharpoonright A$ admits a Borel perfect matching.

In this case I will say G admits a Baire measurable perfect matching.

Let $R : [0,1) \rightarrow [0,1)$ be an irrational rotation of the circle, i.e. $R(x) = x + \alpha \mod 1$ for some irrational α . Then the graph induced by R does not admit a Baire measurable perfect matching.

Let $R : [0,1) \rightarrow [0,1)$ be an irrational rotation of the circle, i.e. $R(x) = x + \alpha \mod 1$ for some irrational α . Then the graph induced by R does not admit a Baire measurable perfect matching.

Proof idea.

Use the fact that R^2 is generically ergodic, i.e. every Borel R^2 -invariant set is either meager or comeager.

Perfect matchings in finite bipartite graphs

Theorem (Hall, 1935)

A finite bipartite graph G has a perfect matching iff $|N(F)| \ge |F|$ for all independent sets $F \subseteq V(G)$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Perfect matchings in finite bipartite graphs

Theorem (Hall, 1935)

A finite bipartite graph G has a perfect matching iff $|N(F)| \ge |F|$ for all independent sets $F \subseteq V(G)$.

A compactness argument also yields:

Theorem

Let G be a locally finite bipartite graph, and suppose that $|N(F)| \ge |F|$ for all finite independent sets $F \subseteq V(G)$. Then G admits a perfect matching.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Theorem (Marks-Unger, 2016)

Let G be a locally finite bipartite Borel graph satisfying $|N(F)| \ge (1 + \varepsilon)|F|$ for all finite independent sets $F \subseteq V(G)$, for some fixed $\varepsilon > 0$. Then G admits a Baire measurable perfect matching.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Theorem (Marks-Unger, 2016)

Let G be a locally finite bipartite Borel graph satisfying $|N(F)| \ge (1 + \varepsilon)|F|$ for all finite independent sets $F \subseteq V(G)$, for some fixed $\varepsilon > 0$. Then G admits a Baire measurable perfect matching.

Corollary

Every **bipartite** *regular non-amenable Borel graph admits a Baire measurable perfect matching*.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Theorem (Marks-Unger, 2016)

Let G be a locally finite bipartite Borel graph satisfying $|N(F)| \ge (1 + \varepsilon)|F|$ for all finite independent sets $F \subseteq V(G)$, for some fixed $\varepsilon > 0$. Then G admits a Baire measurable perfect matching.

Corollary

Every **bipartite** *regular non-amenable Borel graph admits a Baire measurable perfect matching*.

Definition

An infinite connected graph G of bounded degree is non-amenable if there exists $\delta > 0$ such that $|\partial F| \ge \delta |F|$ for all finite $F \subseteq V(G)$.

(ロ) (個) (E) (E) (E) の(の)

Theorem (K.-Lyons, 2023)

If G is a bounded degree, vertex transitive, non-amenable Borel graph (possibly non-bipartite), then G admits a Baire measurable perfect matching.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Theorem (K.-Lyons, 2023)

If G is a bounded degree, vertex transitive, non-amenable Borel graph (possibly non-bipartite), then G admits a Baire measurable perfect matching.

Corollary

If G is the Schreier graph of a free Borel action of a finitely generated non-amenable group, then G admits a Baire measurable perfect matching.

Theorem (K.-Lyons, 2023)

If G is a bounded degree, vertex transitive, non-amenable Borel graph (possibly non-bipartite), then G admits a Baire measurable perfect matching.

Corollary

If G is the Schreier graph of a free Borel action of a finitely generated non-amenable group, then G admits a Baire measurable perfect matching.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Conjecture

If G is the Schreier graph of a free Borel action of a finitely generated group that is not 2-ended, then G admits a Baire measurable perfect matching.

Tutte's theorem

Tutte's theorem

Theorem (Tutte, 1950)

A locally finite graph G admits a perfect matching iff for all finite $X \subseteq V(G)$ we have

$$|X| \geq |\mathcal{C}_{\mathsf{odd}}(G - X)|$$

Here $C_{odd}(G - X)$ denotes the set of odd components of G - X.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Tutte's theorem

Theorem (Tutte, 1950)

A locally finite graph G admits a perfect matching iff for all finite $X \subseteq V(G)$ we have

$$|X| \geq |\mathcal{C}_{\mathsf{odd}}(G-X)|$$

Here $C_{odd}(G - X)$ denotes the set of odd components of G - X.

The Marks-Unger result generalized Hall's theorem to the Baire measurable setting by replacing " $|N(F)| \ge |F|$ " with " $|N(F)| \ge (1 + \varepsilon)|F|$ ". Can we do the same for Tutte's theorem?

Baire measurable Tutte

Baire measurable Tutte

Theorem (K.-Lyons, 2023)

Let G be a locally finite Borel graph, and suppose there exists $\varepsilon > 0$ such that for every finite set $X \subseteq V(G)$, we have

$$|X| \ge |\mathcal{C}_{\mathsf{odd}}(G - X)| + \varepsilon |\mathsf{hull}_{\mathsf{odd}}(X)|.$$

Then G admits a Baire measurable perfect matching.

Baire measurable Tutte

Theorem (K.-Lyons, 2023)

Let G be a locally finite Borel graph, and suppose there exists $\varepsilon > 0$ such that for every finite set $X \subseteq V(G)$, we have

$$|X| \ge |\mathcal{C}_{\mathsf{odd}}(G - X)| + \varepsilon |\mathsf{hull}_{\mathsf{odd}}(X)|.$$

Then G admits a Baire measurable perfect matching.

Definition hull_{odd}(X) := X $\cup \bigcup C_{odd}(G - X)$

Theorem (K.-Lyons, 2023)

Let G be a locally finite Borel graph, and suppose there exists $\varepsilon > 0$ such that for every finite set $X \subseteq V(G)$, we have

 $|X| \ge |\mathcal{C}_{\mathsf{odd}}(G - X)| + \varepsilon |\mathsf{hull}_{\mathsf{odd}}(X)|.$

Then G admits a Baire measurable perfect matching.

Theorem (K.-Lyons, 2023)

Let G be a locally finite Borel graph, and suppose there exists $\varepsilon > 0$ such that for every finite set $X \subseteq V(G)$, we have

 $|X| \ge |\mathcal{C}_{\text{odd}}(G - X)| + \varepsilon |\text{hull}_{\text{odd}}(X)|.$

Then G admits a Baire measurable perfect matching.

Definition

A graph G satisfies $\text{Tutte}_{\varepsilon,k}$ if (a) Tutte's condition holds, and (b) whenever $X \subseteq V(G)$ is finite such that $\text{hull}_{\text{odd}}(X)$ is connected and $|\text{hull}_{\text{odd}}(X)| \ge k$, we have $|X| \ge |\mathcal{C}_{\text{odd}}(G - X)| + \varepsilon |\text{hull}_{\text{odd}}(X)|$.

Theorem (K.-Lyons, 2023)

Let G be a locally finite Borel graph, and suppose there exists $\varepsilon > 0$ such that for every finite set $X \subseteq V(G)$, we have

 $|X| \ge |\mathcal{C}_{\text{odd}}(G - X)| + \varepsilon |\text{hull}_{\text{odd}}(X)|.$

Then G admits a Baire measurable perfect matching.

Definition

A graph G satisfies $\text{Tutte}_{\varepsilon,k}$ if (a) Tutte's condition holds, and (b) whenever $X \subseteq V(G)$ is finite such that $\text{hull}_{\text{odd}}(X)$ is connected and $|\text{hull}_{\text{odd}}(X)| \ge k$, we have $|X| \ge |\mathcal{C}_{\text{odd}}(G - X)| + \varepsilon |\text{hull}_{\text{odd}}(X)|$.

Lemma (Marks-Unger, 2016)

Let G be a locally finite Borel graph, and let $f : \mathbb{N} \to \mathbb{N}$. Then there exist Borel sets $A_n \subseteq V(G)$ such that $\bigcup_n A_n$ is a Borel comeager invariant set and $d_G(x, y) > f(n)$ whenever x, y are distinct vertices in A_n .

Choose $f : \mathbb{N} \to \mathbb{N}$ growing fast enough, and let A_n be the sparse sets given by the lemma.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Choose $f : \mathbb{N} \to \mathbb{N}$ growing fast enough, and let A_n be the sparse sets given by the lemma. We define increasing Borel matchings M_n such that

- 1. M_n covers the vertices in A_n ;
- 2. $G V(M_n)$ satisfies Tutte_{$\varepsilon_n, f(n)$}.

Choose $f : \mathbb{N} \to \mathbb{N}$ growing fast enough, and let A_n be the sparse sets given by the lemma. We define increasing Borel matchings M_n such that

- 1. M_n covers the vertices in A_n ;
- 2. $G V(M_n)$ satisfies Tutte_{$\varepsilon_n, f(n)$}.

Assume M_{n-1} has been defined.

Choose $f : \mathbb{N} \to \mathbb{N}$ growing fast enough, and let A_n be the sparse sets given by the lemma. We define increasing Borel matchings M_n such that

- 1. M_n covers the vertices in A_n ;
- 2. $G V(M_n)$ satisfies Tutte_{$\varepsilon_n, f(n)$}.

Assume M_{n-1} has been defined. For each vertex $x \in A_n$ not covered by M_{n-1} , let e_x be the least edge such that $M_{n-1} \cup \{e_x\}$ extends to a (set-theoretic) perfect matching of G.

Choose $f : \mathbb{N} \to \mathbb{N}$ growing fast enough, and let A_n be the sparse sets given by the lemma. We define increasing Borel matchings M_n such that

- 1. M_n covers the vertices in A_n ;
- 2. $G V(M_n)$ satisfies Tutte_{$\varepsilon_n, f(n)$}.

Assume M_{n-1} has been defined. For each vertex $x \in A_n$ not covered by M_{n-1} , let e_x be the least edge such that $M_{n-1} \cup \{e_x\}$ extends to a (set-theoretic) perfect matching of G. Define:

$$M_n := M_{n-1} \cup \{e_x : x \in A_n \text{ and } x \text{ is not covered by } M_{n-1}\}.$$

Choose $f : \mathbb{N} \to \mathbb{N}$ growing fast enough, and let A_n be the sparse sets given by the lemma. We define increasing Borel matchings M_n such that

- 1. M_n covers the vertices in A_n ;
- 2. $G V(M_n)$ satisfies Tutte_{$\varepsilon_n, f(n)$}.

Assume M_{n-1} has been defined. For each vertex $x \in A_n$ not covered by M_{n-1} , let e_x be the least edge such that $M_{n-1} \cup \{e_x\}$ extends to a (set-theoretic) perfect matching of G. Define:

$$M_n := M_{n-1} \cup \{e_x : x \in A_n \text{ and } x \text{ is not covered by } M_{n-1}\}.$$

Check this works!

Back to the main theorem

Theorem (K.-Lyons, 2023)

If G is a bounded degree, vertex transitive, non-amenable Borel graph (possibly non-bipartite), then G admits a Baire measurable perfect matching.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Back to the main theorem

Theorem (K.-Lyons, 2023)

If G is a bounded degree, vertex transitive, non-amenable Borel graph (possibly non-bipartite), then G admits a Baire measurable perfect matching.

Lemma

Let G be an (infinite, connected, locally finite) non-amenable vertex transitive graph. Then there exists $\varepsilon > 0$ such that for all finite $X \subseteq V(G)$, $|X| \ge |\mathcal{C}_{odd}(G - X)| + \varepsilon |hull_{odd}(X)|$.

Proof sketch.

If d is the degree, and $\delta > 0$ is the expansion constant, then

$$d|X| = \left| E\left(X, \bigcup \mathcal{C}_{\mathsf{odd}}(X)\right) \right| + \left| E\left(X, V(G) \setminus \mathsf{hull}_{\mathsf{odd}}(X)\right) \right|$$

$$\geq d|\mathcal{C}_{\mathsf{odd}}(X)| + \delta|\mathsf{hull}_{\mathsf{odd}}(X)|.$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Lemma (Marks-Unger, 2016)

Let G be a locally finite Borel graph, and let $f : \mathbb{N} \to \mathbb{N}$. Then there exist Borel sets $A_n \subseteq V(G)$ such that $\bigcup_n A_n$ is a Borel comeager invariant set and $d_G(x, y) > f(n)$ whenever x, y are distinct vertices in A_n .

Lemma (Marks-Unger, 2016)

Let G be a locally finite Borel graph, and let $f : \mathbb{N} \to \mathbb{N}$. Then there exist Borel sets $A_n \subseteq V(G)$ such that $\bigcup_n A_n$ is a Borel comeager invariant set and $d_G(x, y) > f(n)$ whenever x, y are distinct vertices in A_n .

Try to find more applications of the Marks-Unger proof technique using the above lemma, in the context of non-amenable/expansive graphs.

Lemma (Marks-Unger, 2016)

Let G be a locally finite Borel graph, and let $f : \mathbb{N} \to \mathbb{N}$. Then there exist Borel sets $A_n \subseteq V(G)$ such that $\bigcup_n A_n$ is a Borel comeager invariant set and $d_G(x, y) > f(n)$ whenever x, y are distinct vertices in A_n .

Try to find more applications of the Marks-Unger proof technique using the above lemma, in the context of non-amenable/expansive graphs.

Question

Does every non-amenable, 2d-regular Borel graph have a Baire measurable Schreier decoration?

Both the Marks-Unger theorem and our theorem draw inspiration from the study of factor of i.i.d. matchings for Cayley graphs.

Both the Marks-Unger theorem and our theorem draw inspiration from the study of factor of i.i.d. matchings for Cayley graphs.

Theorem (Lyons-Nazarov, 2011)

Let G be a locally finite bipartite pmp graph satisfying $\mu(N(A)) \ge (1 + \varepsilon)\mu(A)$ for all Borel independent sets A, for some fixed $\varepsilon > 0$. Then G admits a μ -measurable perfect matching.

Both the Marks-Unger theorem and our theorem draw inspiration from the study of factor of i.i.d. matchings for Cayley graphs.

Theorem (Lyons-Nazarov, 2011)

Let G be a locally finite bipartite pmp graph satisfying $\mu(N(A)) \ge (1 + \varepsilon)\mu(A)$ for all Borel independent sets A, for some fixed $\varepsilon > 0$. Then G admits a μ -measurable perfect matching.

Theorem (Lyons-Nazarov, 2011)

The Cayley graph of a bipartite finitely generated non-amenable group admits a factor of i.i.d. perfect matching. (Equivalently, the Schreier graph of the corresponding Bernoulli shift admits a μ -measurable perfect matching.)

Both the Marks-Unger theorem and our theorem draw inspiration from the study of factor of i.i.d. matchings for Cayley graphs.

Theorem (Lyons-Nazarov, 2011)

Let G be a locally finite bipartite pmp graph satisfying $\mu(N(A)) \ge (1 + \varepsilon)\mu(A)$ for all Borel independent sets A, for some fixed $\varepsilon > 0$. Then G admits a μ -measurable perfect matching.

Theorem (Lyons-Nazarov, 2011)

The Cayley graph of a bipartite finitely generated non-amenable group admits a factor of i.i.d. perfect matching. (Equivalently, the Schreier graph of the corresponding Bernoulli shift admits a μ -measurable perfect matching.)

Theorem (Csóka-Lippner, 2017)

The Cayley graph of a finitely generated non-amenable group admits a factor of i.i.d. perfect matching.

Balanced orientations

Theorem (Bencs-Hrušková-Toth, 2021)

Every non-amenable, quasi-transitive, unimodular graph with all degrees even has a factor of i.i.d. balanced orientation.

A balanced orientation of a graph with all degrees even is an orientation for which each vertex has in-degree equal to out-degree.

Balanced orientations

Theorem (Bencs-Hrušková-Toth, 2021)

Every non-amenable, quasi-transitive, unimodular graph with all degrees even has a factor of i.i.d. balanced orientation.

A balanced orientation of a graph with all degrees even is an orientation for which each vertex has in-degree equal to out-degree.

Theorem (K.-Lyons, 2023)

Every bounded degree, non-amenable Borel graph with only even degrees admits a Baire measurable balanced orientation.

Balanced orientations

Theorem (Bencs-Hrušková-Toth, 2021)

Every non-amenable, quasi-transitive, unimodular graph with all degrees even has a factor of i.i.d. balanced orientation.

A balanced orientation of a graph with all degrees even is an orientation for which each vertex has in-degree equal to out-degree.

Theorem (K.-Lyons, 2023)

Every bounded degree, non-amenable Borel graph with only even degrees admits a Baire measurable balanced orientation.

Question

What is the relationship between factor of i.i.d results and Baire measurable results, for non-amenable graphs?