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What objects is this talk about?

A perfect matching of a graph is a set of vertex-disjoint edges that
cover every vertex.

Given a (locally finite) Borel graph G on a Polish space V (G ), we
study whether there is a Borel comeager invariant set A ⊆ V (G )
such that G � A admits a Borel perfect matching.

In this case I will say G admits a Baire measurable perfect
matching.
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Irrational rotations

Let R : [0, 1)→ [0, 1) be an irrational rotation of the circle, i.e.
R(x) = x + α mod 1 for some irrational α. Then the graph
induced by R does not admit a Baire measurable perfect matching.

Proof idea.
Use the fact that R2 is generically ergodic, i.e. every Borel
R2-invariant set is either meager or comeager.
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Perfect matchings in finite bipartite graphs

Theorem (Hall, 1935)

A finite bipartite graph G has a perfect matching iff |N(F )| ≥ |F |
for all independent sets F ⊆ V (G ).

A compactness argument also yields:

Theorem
Let G be a locally finite bipartite graph, and suppose that
|N(F )| ≥ |F | for all finite independent sets F ⊆ V (G ). Then G
admits a perfect matching.
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Baire measurable perfect matchings in bipartite Borel
graphs

Theorem (Marks-Unger, 2016)

Let G be a locally finite bipartite Borel graph satisfying
|N(F )| ≥ (1 + ε)|F | for all finite independent sets F ⊆ V (G ), for
some fixed ε > 0. Then G admits a Baire measurable perfect
matching.

Corollary

Every bipartite regular non-amenable Borel graph admits a Baire
measurable perfect matching.

Definition
An infinite connected graph G of bounded degree is non-amenable
if there exists δ > 0 such that |∂F | ≥ δ|F | for all finite F ⊆ V (G ).
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Our main theorem

Theorem (K.-Lyons, 2023)

If G is a bounded degree, vertex transitive, non-amenable Borel
graph (possibly non-bipartite), then G admits a Baire measurable
perfect matching.

Corollary

If G is the Schreier graph of a free Borel action of a finitely
generated non-amenable group, then G admits a Baire measurable
perfect matching.

Conjecture

If G is the Schreier graph of a free Borel action of a finitely
generated group that is not 2-ended, then G admits a Baire
measurable perfect matching.
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Tutte’s theorem

Theorem (Tutte, 1950)

A locally finite graph G admits a perfect matching iff for all finite
X ⊆ V (G ) we have

|X | ≥ |Codd(G − X )|

Here Codd(G − X ) denotes the set of odd components of G − X .

The Marks-Unger result generalized Hall’s theorem to the Baire
measurable setting by replacing “|N(F )| ≥ |F |” with
“|N(F )| ≥ (1 + ε)|F |”. Can we do the same for Tutte’s theorem?
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Baire measurable Tutte

Theorem (K.-Lyons, 2023)

Let G be a locally finite Borel graph, and suppose there exists
ε > 0 such that for every finite set X ⊆ V (G ), we have

|X | ≥ |Codd(G − X )|+ ε|hullodd(X )|.

Then G admits a Baire measurable perfect matching.

Definition
hullodd(X ) := X ∪

⋃
Codd(G − X )
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Overview of the proof (1)

Theorem (K.-Lyons, 2023)

Let G be a locally finite Borel graph, and suppose there exists
ε > 0 such that for every finite set X ⊆ V (G ), we have

|X | ≥ |Codd(G − X )|+ ε|hullodd(X )|.

Then G admits a Baire measurable perfect matching.

Definition
A graph G satisfies Tutteε,k if (a) Tutte’s condition holds, and (b)
whenever X ⊆ V (G ) is finite such that hullodd(X ) is connected and
|hullodd(X )| ≥ k , we have |X | ≥ |Codd(G − X )|+ ε|hullodd(X )|.

Lemma (Marks-Unger, 2016)

Let G be a locally finite Borel graph, and let f : N→ N. Then
there exist Borel sets An ⊆ V (G ) such that

⋃
n An is a Borel

comeager invariant set and dG (x , y) > f (n) whenever x , y are
distinct vertices in An.
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Overview of the proof (2)

Choose f : N→ N growing fast enough, and let An be the sparse
sets given by the lemma.

We define increasing Borel matchings Mn

such that

1. Mn covers the vertices in An;

2. G − V (Mn) satisfies Tutteεn,f (n).

Assume Mn−1 has been defined. For each vertex x ∈ An not
covered by Mn−1, let ex be the least edge such that Mn−1 ∪ {ex}
extends to a (set-theoretic) perfect matching of G . Define:

Mn := Mn−1 ∪ {ex : x ∈ An and x is not covered by Mn−1}.

Check this works!
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Back to the main theorem

Theorem (K.-Lyons, 2023)

If G is a bounded degree, vertex transitive, non-amenable Borel
graph (possibly non-bipartite), then G admits a Baire measurable
perfect matching.

Lemma
Let G be an (infinite, connected, locally finite) non-amenable
vertex transitive graph. Then there exists ε > 0 such that for all
finite X ⊆ V (G ), |X | ≥ |Codd(G − X )|+ ε|hullodd(X )|.

Proof sketch.
If d is the degree, and δ > 0 is the expansion constant, then

d |X | =
∣∣∣E (X ,⋃ Codd(X )

)∣∣∣+
∣∣∣E(X ,V (G ) \ hullodd(X )

)∣∣∣
≥ d |Codd(X )|+ δ|hullodd(X )|.
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Future directions: idea 1

Lemma (Marks-Unger, 2016)

Let G be a locally finite Borel graph, and let f : N→ N. Then
there exist Borel sets An ⊆ V (G ) such that

⋃
n An is a Borel

comeager invariant set and dG (x , y) > f (n) whenever x , y are
distinct vertices in An.

Try to find more applications of the Marks-Unger proof technique
using the above lemma, in the context of non-amenable/expansive
graphs.

Question
Does every non-amenable, 2d-regular Borel graph have a Baire
measurable Schreier decoration?
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Future directions: idea 2

Both the Marks-Unger theorem and our theorem draw inspiration
from the study of factor of i.i.d. matchings for Cayley graphs.

Theorem (Lyons-Nazarov, 2011)

Let G be a locally finite bipartite pmp graph satisfying
µ(N(A)) ≥ (1 + ε)µ(A) for all Borel independent sets A, for some
fixed ε > 0. Then G admits a µ-measurable perfect matching.

Theorem (Lyons-Nazarov, 2011)

The Cayley graph of a bipartite finitely generated non-amenable
group admits a factor of i.i.d. perfect matching. (Equivalently, the
Schreier graph of the corresponding Bernoulli shift admits a
µ-measurable perfect matching.)

Theorem (Csóka-Lippner, 2017)

The Cayley graph of a finitely generated non-amenable group
admits a factor of i.i.d. perfect matching.
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Theorem (Csóka-Lippner, 2017)

The Cayley graph of a finitely generated non-amenable group
admits a factor of i.i.d. perfect matching.



Future directions: idea 2

Both the Marks-Unger theorem and our theorem draw inspiration
from the study of factor of i.i.d. matchings for Cayley graphs.

Theorem (Lyons-Nazarov, 2011)

Let G be a locally finite bipartite pmp graph satisfying
µ(N(A)) ≥ (1 + ε)µ(A) for all Borel independent sets A, for some
fixed ε > 0. Then G admits a µ-measurable perfect matching.

Theorem (Lyons-Nazarov, 2011)

The Cayley graph of a bipartite finitely generated non-amenable
group admits a factor of i.i.d. perfect matching. (Equivalently, the
Schreier graph of the corresponding Bernoulli shift admits a
µ-measurable perfect matching.)
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Balanced orientations

Theorem (Bencs-Hrušková-Toth, 2021)

Every non-amenable, quasi-transitive, unimodular graph with all
degrees even has a factor of i.i.d. balanced orientation.

A balanced orientation of a graph with all degrees even is an
orientation for which each vertex has in-degree equal to out-degree.

Theorem (K.-Lyons, 2023)

Every bounded degree, non-amenable Borel graph with only even
degrees admits a Baire measurable balanced orientation.

Question
What is the relationship between factor of i.i.d results and Baire
measurable results, for non-amenable graphs?
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